Archive for the ‘Videoblogging’ Category

Software-Defined Radio: Try Before You Buy? You Might Like It!

Sure! You don’t need to have a software-defined radio (SDR) before you start learning how to use the technology; there are a few different paths you can take, exploring and learning about SDR.

One way to gain some experience with SDR without spending a dime is to install a free software package for the very popular, non-Linux, operating system (that starts with ‘W’), and give SDR a test drive. If you like it, you might consider getting your own hardware (like the SDRplay RSPdx, for instance), and connecting it up to your computer and running this software, too.

Why I Dived Into SDR

I have always loved radio, ever since the early 1970s, when I discovered shortwave radio. In the last couple of years, I’ve had an increasing interest in the world of SDR. When I am working, but away from home (remember those days, before Covid?), I want to sample news and programming from around the world, but through shortwave. The way to do that, I found, is by using the various SDR options which allow a person to tune a remote receiver, and listen.

I also find working with the waterfall of a typical SDR-software user interface rewarding because, instead of blindly searching for signals in a subband, I can see all of the received signals on the scrolling time representation of a slice of frequency. Simply select that signal on the waterfall, and the radio tunes right to it.

I often connect to different SDR radios around the world, to catch all manner of shortwave signals, from maritime, military air, trans-oceanic air, or coast guard radio traffic, or other interesting HF communications including amateur radio CW and SSB signals. Occasionally, I also check out VHF and UHF signals from around the world. All of that, while instead an office building that is not suited for shortwave radio reception.

I’ve now decided to give back to the community; I’ve added my SDR receiver to the collection of receivers located around the world on the SDRSpace network of SDR radios.

My new SDRplay RSPdx software-defined radio receiver is live, via, using the SDR Console software (Version 3).

The receivers are online whenever I am not transmitting and when there are no local thunderstorms.

Antenna Port A is connected to a wire antenna (a horizontal 100-foot wire that runs out from my house’s chimney to a tall tree; about 10 feet of that wire is oriented vertically, where the wire passes through a pulley and then is weighted down so it can move with wind-driven tree movement), while Antenna Port B is connected up to a VHF/UHF discone.

Both antenna systems have an AM Broadcast band notch (reject) filter reducing local AM Broadcast-Band radio station signals by about 30 to 40 dB. I need to use these because the very close KLIN transmitting tower is just miles away and those signals overwhelm the receiver. When I use the signal filters, the local AM Broadcasting signals no longer overwhelm the receiver.

In the following video, I first explain my SDR setup, and in the second half of the video, I tune around the radio spectrum, using the software to control my SDR receiver.

A Couple of Questions

After watching this video, WO9B wrote an email to me. Michael asked of me two questions, summed up as:

1. Your SDR window has the IF screen on top. How is that accomplished?

2. Your AM Broadcast filters; more info, please. I live in the area of mucho broadcast stations and that looks like something I could use.

In the following video, I demonstrate how I changed my layout of the SDR Console software. And, I mention the AM Broadcast Filter for SDR Receivers (the hardware filter is found here:

To Use My Receiver

Download the latest version of SDR-Console from – there is a 32-bit and a 64-bit Windows installation package.

The 64-bit installation package may be downloaded from one of these three sources:

1. Google
2. DropBox
3. Microsoft!AovWaZDu7Hrd3U-yqK1bs3wuaFw2?e=o4nKeh

The 32-bit installation package can be downloaded from one of these three sources:

1. Google
2. DropBox
3. Microsoft!AovWaZDu7Hrd3U4mJiiRtI9lm70s?e=HDG4ZX

Install the SDR Console package according to the directions given. Once you have the software installed, you will want to add my server. It takes some work to get familiar with the software, but there are online FAQs on how to begin.

One guide on how to add a server to the list from which you can pick may be found, here:

I worked on getting all of the bugs worked out of my installation before making the video. It did take some work, and reading up on things. But, the software is solid and a good contender against SDRuno, and HDSDR, and, this way I can share it online with you.

My server is known as, ‘0 NW7US‘ — it will be online when I am not using my antenna systems for transmitting. It will be offline during thunderstorms, or during times when I must use the systems for transmitting.

Look for the 0 NW7US server.

Software-defined radio is a great way to hear all sorts of communications, from local AM broadcast stations, FM stations, VHF Air Traffic, to shortwave radio stations including amateur radio HF communications.

Thank you for watching, commenting, and most of all, for subscribing; please subscribe to my YouTube Channel: Also, please click on the bell, to enable alerts so that when I post a new video, you will be notified. By subscribing, you will be kept in the loop for new videos and more.

73 de NW7US

.. (yes, this is an expansion of an earlier post… forgive the redundancy… thank you) ..

YouTubers Hamfest Starts TOMORROW! May 23rd

Check the website below for links to the Largest, Online LIVESTREAM Hamfest ever attempted. All of the channels participating in this event are incredibly excited about pulling this off.

Join us at 18:00EDT for a Happy Hour Livestream with all of the YouTubers and lots of guests in the Live Chat.

A HUGE thanks to all of the Brands who will be guest speakers during the event, either Saturday or Sunday morning. Those include:
Ham Radio Deluxe
State Of the Hobby Survey with N8RMA
SDR Play
Bioenno Batteries
DX Commander
Heil Sound
Chameleon Antennas
Bridgecom Systems
Ham Radio Outlet


Yet in Quarantine, Life Blossoms!

About a month ago, I asked,

What is going on with you during this challenging situation?” and, “How do you use amateur radio, now that we are all stuck at home?  Are you using ham radio more, now?  Less?

I am moved to say, “Thank you, to each of you who commented and even those who made a video response. I sure appreciate it!

During that video blog (or, Vlog), back a month ago (link: Chat From a Quarantined Software Engineer – Welfare Check!), I mentioned my need for dental surgery. 

I did have to have the tooth removed.  It was completely split down the middle (top to bottom), down to the root.  There was no justifiable way to save the tooth. 

I now am missing two bottom back-most teeth, and one bottom, back-most tooth.  I can report that I have healed up nicely.  I am starting to enjoy a hamburger or two.

Through all of this, I’ve still been working. Also, I’ve been involved with a LOT more ham radio–especially with Morse code activities.

How has the last month treated you?  After watching this new video (below), please leave a comment or two, or three; let hear from you, okay?

More than anything, please leave a comment to let me know how you are doing.  I hope to hear from you.

Here’s the video:

73 de NW7US dit dit


Olivia Digital Mode (1000 Hz) on Twenty Meters – A Simple Video

The Olivia digital mode on HF radio is a mode capable of two-way chat (QSO) communication (keyboard to keyboard, like RTTY) over long-distance shortwave (HF) ionospheric propagation paths, especially over polar regions.

If you are interested in more than a logbook QSO (such as is typical with FT8 and other propagation-checking modes) but want to chat with other hams around the world using digital modes, consider Olivia as one option.

This video captures a few moments of two-way conversation on the Twenty-Meter band, up in the sub-band where 1000-Hz digital modes are commonplace. More narrow-bandwidth settings are used in a lower subband in the digital slice of Twenty Meters. More details about the mode are in the files section of this website:

In 2005, SP9VRC, Pawel Jalocha, released to the world a mode that he developed starting in 2003 to overcome difficult radio signal propagation conditions on the shortwave (high-frequency, or HF) bands. By difficult, we are talking significant phase distortions and low signal-to-noise ratios (SNR) plus multipath propagation effects. The Olivia-modulated radio signals are decoded even when it is ten to fourteen dB below the noise floor. That means that Olivia is decoded when the amplitude of the noise is slightly over three times that of the digital signal!

Olivia decodes well under other conditions that are a complex mix of atmospheric noise, signal fading (QSB), interference (QRM), polar flutter caused by a radio signal traversing a polar path. Olivia is even capable when the signal is affected by auroral conditions (including the Sporadic-E Auroral Mode, where signals are refracted off of the highly-energized E-region in which the Aurora is active).

Currently, the only other digital modes that match or exceed Olivia in their sensitivity are some of the modes designed by Joe Taylor as implemented in the WSJT programs, including FT8, JT65A, and JT65-HF–each of which are certainly limited in usage and definitely not able to provide true conversation capabilities.  Olivia is useful for emergency communications, unlike JT65A or the popular FT8. One other mode is better than Olivia for keyboard-to-keyboard comms under difficult conditions: MT63. Yet, Olivia is a good compromise that delivers a lot. One reason for this is that there are configurations that use much less bandwidth than 1000 Hz. 16 tones in 250 Hz is our common calling-frequency configuration, which we use lower down in the Twenty-Meter band, with a center frequency of 14.0729 MHz.

Q: What’s a ‘CENTER’ Frequency? Is That Where I Set My Radio’s Dial?

For those new to waterfalls: the CENTER frequency is the CENTER of the cursor shown by common software. The cursor is what you use to set the transceiver’s frequency on the waterfall. If your software’s waterfall shows the frequency, then you simply place the cursor so that its center is right on the center frequency listed, above. If your software is set to show OFFSET, then you might, for example, set your radio’s dial frequency to 14.0714, and place the center of your waterfall cursor to 1500 (1500 Hz). That would translate to the 14.0729 CENTER frequency.

The standard Olivia formats (shown as the number of tones/bandwidth in Hz) are 8/250, 8/500, 16/500, 8/1000, 16/1000, and 32/1000. Some even use 16/2000 for series emergency communication. The most commonly-used formats are 16/500, 8/500, and 8/250. However, the 32/1000 and 16/1000 configurations are popular in some areas of the world (Europe) and on certain bands.

These different choices in bandwidth and tone settings can cause some confusion and problems–so many formats and so many other digital modes can make it difficult to figure out which mode you are seeing and hearing. After getting used to the sound and look of Olivia in the waterfall, though, it becomes easier to identify the format when you encounter it. To aid in your detection of what mode is being used, there is a feature of many digital-mode software implementation suites: the RSID. The next video, below, is a demonstration on how to set the Reed-Solomon Identification (RSID) feature in Ham Radio Deluxe’s Digital Master 780 module (HRD DM780).

I encourage ALL operators, using any digital mode such as Olivia, to TURN ON the RSID feature as shown in this example. In Fldigi, the RSID is the TXID and RXID; make sure to check (turn on) each, the TXID and RXID.

Please, make sure you are using the RSID (Reed Solomon Identification – RSID or TXID, RXID) option in your software. RSID transmits a short burst at the start of your transmission which identifies the mode you are using. When it does that, those amateur radio operators also using RSID while listening will be alerted by their software that you are transmitting in the specific mode (Olivia, hopefully), the settings (like 8/250), and where on the waterfall your transmission is located. This might be a popup window and/or text on the receive text panel. When the operator clicks on that, the software moves the waterfall cursor right on top of the signal and changes the mode in the software. This will help you make more contacts!

RSID Setting:

+ NOTE: The MixW software doesn’t have RSID features. Request it!

Voluntary Olivia Channelization 

Since Olivia signals can be decoded even when received signals are extremely weak, (signal to noise ratio of -14db), signals strong enough to be decoded are sometimes below the noise floor and therefore impossible to search for manually. As a result, amateur radio operators have voluntarily decided upon channelization for this mode. This channelization allows even imperceptibly weak signals to be properly tuned for reception and decoding. By common convention amateur stations initiate contacts utilizing 8/250, 16/500, or 32/1000 configuration of the Olivia mode. After negotiating the initial exchange, sometimes one of the operators will suggest switching to other configurations to continue the conversation at more reliable settings, or faster when conditions allow. The following table lists the common center frequencies used in the amateur radio bands.

Olivia (CENTER) Frequencies (kHz) for Calling, Initiating QSOs

Current Olivia Digital Mode Calling Frequencies

Current Olivia Digital Mode Calling Frequencies on Shortwave (HF)

It is often best to get on standard calling frequencies with this mode because you can miss a lot of weak signals if you don’t. However, with Olivia activity on the rise AND all the other modes vying for space, a good deal of the time you can operate wherever you can find a clear spot–as close as you can to a standard calling frequency.

Note: some websites publish frequencies in this band, that are right on top of weak-signal JT65, JT9, and FT8 segmentsDO NOT QRM weak-signal QSOs!

We (active Olivia community members) suggest 8/250 as the starting settings when calling CQ on the USB frequencies designated as ‘Calling Frequencies.’ A Calling Frequency is a center frequency on which you initially call, ‘CQ CQ CQ. . .’ and then, with the agreement of the answering operator, move to a new nearby frequency, changing the number of tones and bandwidth at your discretion. Even though 8/250 is slow, the CQ call is short. But, it is narrow, to allow room for other QSOs nearby. It is also one of the best possible Olivia configurations for weak-signal decoding.

About That (Expletive) ARRL Proposal to Give Technicians The Whole World

It is my observation that by enabling someone a taste of what can be accomplished on HF (shortwave) spectrum, especially using one of the newer digital modes, that someone has an opportunity for inspiration, perhaps enough to catch the HF fever that is required to move that someone from entry-level to experienced, skilled expert. Right now, the regulations limit the Technician-level license holder to digital operation only on bands that barely propagate (if at all!) during the weak solar cycles. It is a far stretch to postulate that having privileges on dead bands will inspire exploration and tempt the operator to upgrade to a higher license class.

I believe that Technician-class priveledges should be expanded so that entry-level amateur radio operators can get a practical taste of effectively-propagating HF signals on lower frequencies than those frequencies currently available to them for digital operation. And, the allowed mode on these subbands should include digital modes. This “would encourage a sustained interest in Amateur Radio and encourage further development of knowledge and operating skills,” a concept already proven by General-class operators that get enough of a taste that they then pursue the Amateur Extra license.

Comments to me are below the following video section. I also include my response.

In the following video, I share my opinion regarding the ARRL asking the FCC to grant more operating privileges across the many amateur radio allocations on shortwave (HF, or, High Frequencies). The video is my brief takeaway of ARRL’s petition: What is the issue, as a whole, and what the ARRL is addressing–the lack of desire by most current Techs to upgrade. The logic of my perspective concludes that if you give them a taste of lower-shortwave propagation and excitement, then they will want to upgrade. This logic is already proven as applicable by the fact that the General class exists. All this proposal will do is allow the tech to experience what could be very attractive. Just like for the General.

The next two videos are addendums to the first video:

I made a few technical mistakes in the first video. The last video contains corrections and further comments.

Comments Received, and My Response

I have received many responses–some in opposition, some in support. Here are example contrarian responses along with my reply:

[Dear] Tomas David Hood[:] Something for absolutely nothing has never taught anyone anything good, but to want another free lunch. 35 multiple guess easy questions was all that was asked to get general class privileges, but that’s just too hard for the current class. Something for nothing is what sell today, and the ARRL, and probably half the country thinks socialism is the way to reach the new hams I guess. But the ARRL will never get another dime from me. You want a trophy or additional privileges, Get them as everyone else did,, Work for them, study, just a little is all that was asked. Remember, If it didn’t cost anything, it probably isn’t worth anything!

If they are not willing to take a simple test, and yet they want to upgrade, then yes they are the same as saying that we are asking too much, but would participate, you are suggesting, as long as it didn’t require any work or effort on their part, Its a shame.. And I am embarrassed on their behalf… Alexandria Ocasio-Cortez could pass that test, but she would probably agree with you, that people are asking them to be smart and study, and that’s somehow probably racist and just over the line for you.

At this point the ARRL should just say, we are not protecting the spectrum, but about selling the ham radio spectrum to the highest bidders. In this case, they be;live that will be the techs who will purchase HF gear, and of course, the ARRL will benefit hugely from the equipment makers desire to market to the group.

My response is:

What the heck is wrong with selling radios?

But, seriously, which of the many Technicians say that they want to upgrade? That’s the point: the majority of Technician-class amateur radio operators are not upgrading. They get on VHF and above, and are stationary, with few realizing that there’s so much more than the aspect of the hobby evident in their local community.

With little to no exposure to other aspects of the hobby, the typical ham in the current ham-radio culture settles for what is presented by local mentors. Weather spotting, DMR, etc.

Because they have current HF privileges that have so little practical use (CW only on lower frequencies; voice on 10 meters which doesn’t propagate well during this period of no sunspot activity…), they see no incentive to delve into what appears like a waste of time.

The proposal is not giving away the farm. It simply adds a small slice on a limited set of HF bands (but where a signal has a better chance of propagation), allowing for Technician-class operators to get a real sense of the potential waiting for them if they pursue the General.

Then, once upgraded to General, they get even more exposure, and hopefully, see why it is great to be an Amateur Extra.

Tomas David Hood what’s wrong with selling radios. Nothing at all, but if I removed the test that drivers take to show they understand the rules and how to drive, then I can sell more cars and more insurance to poor drivers. Do you or anyone else think that’s a good idea. A few tech’s putting their hands on the plate of those high voltage amps, and maybe, just maybe, someone will believe me when I say some basic testing should be required for HF privileges. Now, all they will have is a cereal box license in my book, and in the opinion of many of my friends, so it;s not just me. If I am wrong, then there are a lot of people that are wrong like me, and they will fight for there hobby. I am a ARRL VE, but I will never test another Ham if this goes through, and I will spend the rest of my days making sure any newcomers realize what the ARRL did to what once was a good hobby, and how a few people didn’t seem to understand why giving away free privileges is always bad for our society, and always bad for our hobby.

Actually I have a real case study that is local,, and yes the guy doid put his hand on the plate, and yes he hit the floor.. and yes, after I found out he was ok,, I think it’s plenty funny,, Yes, they need to study more than that.


Your argument that Technician-class operators will kill themselves because the test is so easy that they will end up electrocuting themselves is yet another Red Herring. Technicians play with dangerous VHF, UHF, SHF equipment, with ominous dangerous aspects deserving respect. If you really think that the General test is the difference between life and death, why even worry? The number of technicians will be nicely reduced to a more acceptable, comfortable number.

I’ve seen Amateur Extra-class operators do the same sort of dangerous, life-threatening stunts.

The issue you are highlighting is a different problem that must be solved separately from the idea of creating a more practical incentive; all tests should be improved in such a way as to foster greater technical knowledge and awareness of all aspects of the hobby.

Better mentoring. Less us-vs-them. More education. More community. All of these should be explored and enhanced. Solve the problem, instead of ostracizing. And, realize that this proposed change is NOT a dumbing-down maneuver to give away the ham radio hobby to the unclean.

Ham Radio Exam – Tech Study App Review

If you know someone who is planning on getting their ham radio license, this app may be just what they need.

It was written by Roy Watson, N1ZTL and has the current question pool (2018-2022). The app has 67 reviews on iTunes and boasts a 4.8 star rating — and it’s also free.

You can study each question in the question pool and each section is broken down by the number of questions per section as well.

Once you select a section, it gives you each question number, the text of the question and the four possible answers as well with the correct answer highlighted in green.

If you’re interested, check out my full review of this app.

73 y’all

How I Reunited Two Devils Brigade Canadian and American Veterans of World War Two

In the 1990s while living in eastern Montana, I had the amazing experience of reuniting two soldiers that served in the Devil’s Brigade. They both trained near Helena, Montana.

One day, I was operating on the amateur radio shortwave Ten-Meter band, and a gentleman answered my, “CQ, CQ, CQ, this is N7PMS in Montana, Over”. I took notes of our conversation.

The next day, when again I called for any station to answer my call for a conversation, another fellow, from Canada, answered me. I learned something amazing: Both of these two men mentioned that, during World War Two, they both were in the same special forces unit, training near Helena, Montana.

One of these Veterans served in the Canadian Armed Forces, and the other in the American Armed Forces. Listen to my story, for the full details of this amazing experience I had as an amateur radio operator.

Jump to 3:22 if you wish to skip my introduction to the story, during which I give some background on when and so on:

This certainly was one of the most memorable moments in my amateur radio hobby experience! The joy of reuniting friends is good.


The 1st Special Service Force (also called The Devil’s Brigade, The Black Devils, The Black Devils’ Brigade, and Freddie’s Freighters), was an elite American-Canadian commando unit in World War II, under command of the United States Fifth Army. The unit was organized in 1942 and trained at Fort William Henry Harrison near Helena, Montana in the United States. The Force served in the Aleutian Islands, and fought in Italy, and southern France before being disbanded in December 1944.

The modern American and Canadian special operations forces trace their heritage to this unit. In 2013, the United States Congress passed a bill to award the 1st Special Service Force the Congressional Gold Medal.

Thank you for watching, and sharing. Comments are welcome: do you have a memorable moment in your radio hobby experience on the air?

73 de NW7US

Subscribe FREE to's
Amateur Radio Newsletter

We never share your e-mail address.

Do you like to write?
Interesting project to share?
Helpful tips and ideas for other hams?

Submit an article and we will review it for publication on!

Have a ham radio product or service?
Consider advertising on our site.

Are you a reporter covering ham radio?
Find ham radio experts for your story.

How to Set Up a Ham Radio Blog
Get started in less than 15 minutes!

  • Matt W1MST, Managing Editor

Sign up for our free
Amateur Radio Newsletter

Enter your e-mail address: