Stuart/KB1HQS has been experimenting with various modifications of the Arrow II antennas. Recently, he put together a video of the various mods, well done and interesting:
Ultimate Arrow Antenna Modifications
I am a big fan of the Arrow II style antennas for VHF SOTA. Initially, I used the dualband 2m/70cm antenna for satellite work as well as mountaintop activity. This started before SOTA was even a thing, as I hiked in the Colorado mountains and made radio contacts just for fun. These days, we normally carry the 2m-only version of the antenna, with split boom and 3 elements. My personal seamstress (Joyce/K0JJW) worked up a really nice rollup case for it. Sometimes, we’ll take along a separate 5-element 70 cm Yagi, which can remain fully-assembled and strapped onto my pack.
K0NR operating 2m FM from a summit using the Arrow II 3-element Yagi antenna.
All antennas are a compromise between cost, size, weight, performance, convenience and durability. I have found that the 3-element Yagi from Arrow fits my needs really well. I have not been motivated to modify it. The Arrow antenna has a gain of about 6 dBd and is 37.5 inches long. We handhold the antenna and that is about as big/long as I’d like to hold. I am still in search of a higher-gain antenna for those special situations when I know that a few more dB of gain could make a difference. I’ve not really found anything I like. A longer boom would likely require a mast and, therefore, a guy system, which adds more weight and complexity.
Antennas are a never-ending source of options and experimentation, so go out and try something new.
I’ve been interested in the idea of a microphone-centric radio and wrote about it here: How About a Mic-Centric Mobile Transceiver? Shortly thereafter, I discovered that QYT has introduced a VHF/UHF ham rig that has the display and controls in the microphone (Model KT-WP12).
You may want to watch the video by Tech Minds, which does a good job of introducing the radio.
I was very keen on trying this radio out, so I purchased one, paying about $110.
On the Bench
First, I did some bench tests to check the basic performance of the radio. The receiver sensitivity, transmit frequency and FM deviation all looked very good. The one specification that was disappointing was the RF power output. On the 2m band, the output power was 20.6 W, while the 70cm band was 15 W. The specification for the radio is 25 W. The power was measured using an HP 8920A RF Communications Test
I’ve noticed this on other radios from Chinese manufacturers: the basic specs of the radio check out, except the RF power level is low.
User Interface
As you might expect, cramming all of the controls into the microphone is a challenging user interface design. I spend quite a bit of time playing with the radio at home before actually using it on the air. Overall, I found the user interface to be acceptable, but several areas that should be improved.
QYT relies on the menu system to provide control of many of the settings. This is similar to the various Chinese handhelds where you push the MENU button to access the menus, followed by UP/DOWN to sequence through the menus, followed by MENU to access the specific setting. Then the UP/DOWN buttons choose the value of the setting and another push on MENU to accept it. The volume control setting is buried in this menu system, which seems like a poor choice. Fortunately, Mick/M0VMK pointed out that the volume can also be set by enabling the monitor feature (big button on the top of the mic) and hitting UP/DOWN.
The portable SOTA station with Bioenno battery.
This design depends too much on the menu system. A few user-defined buttons would be a real help. This radio could benefit from a serious redesign using User-Centered Design.
This radio has one receiver but allows for three independent frequencies to be displayed simultaneously. There is a scanning mode that tries to emulate a multi-receiver radio. This too is all too common with the Chinese radios…somehow they have it in their heads that this adds value for the user. My experience is that it mostly confuses the user. Most users would be better served with a single frequency display, supplemented with dual-watch and scanning capability.
You probably won’t be surprised that the user manual is terrible, also common with Chinese manufacturers, but this one is particularly bad. Same with the programming software…it mostly works (I had a few crashes) but it is poorly written.
On The Air (SOTA)
I was very interested in trying out this radio for Summits On The Air (SOTA) use. The idea is that the radio can be stuffed into a fanny pack, with the microphone, speaker, display, and controls in your hand.
The QYT radio stuffed into a fanny pack.
The basic concept of holding everything in the palm of my hand worked out quite well. The display was visible in bright sunlight, the speaker audio was clear, and the microphone worked great. I made a number of SOTA contacts and received good signal reports. I held the microphone in one hand and pointed the 3-element Yagi antenna with the other hand. (Joyce/K0JJW assisted with logging and we took turns working the SOTA chasers.)
As soon as I fired up the radio, I heard interference on the 2m band, not very strong but noticable. It sounded like it was coming from an FM broadcast station. Pointing the Yagi antenna in the direction of the FM station on the adjacent mountain seemed to confirm the source. I did not hear any interference on the 70cm band. I’ve operated from this SOTA summit before and have not noticed any interference with other equipment, including Yaesu handhelds. Also, I switched to my Yaesu FT-90 and the broadcast station was not heard. As various people have suspected, this indicates that the receiver in the QYT is not very robust in terms of rejecting off-channel signals. Of course, this is an anecdotal report, not based on bench measurements.
Bob/K0NR on a SOTA summit with the KT-WP12 in a fanny pack.
I also encountered an anomaly where after my transmission, the radio did not revert back to receive quickly. There was a few seconds where no audio was coming out of the transceiver. This caused me to miss a few responses to my CQ call. This issue requires some additional investigation. It may have just been operator error on my part. However, I suspect that the radio was probably locking onto another frequency but I am not sure (see previous comments about the three frequency scanning mode). So file this issue under “stay tuned for more information.”
Note that I did not use the radio very much on repeaters, focusing on SOTA simplex operating with no transmit offset or CTCSS.
Conclusion
On the positive side, I really like the microphone-centric approach that this radio uses. The user interface can be improved but it is good enough.
The two big limitations of this radio are 1) low RF power output and 2) weak off-channel receiver performance. Now you might say that the RF power is not off by that much but my interest is having a SOTA radio that greatly exceeds the power of a typical 5 W handheld. On the 70 cm band, this radio only put out 15 W, so only 4.7 dB better than a handheld. The poor receiver performance will tend be an issue on summits that have radio installations nearby. In some cases, this can completely prevent a VHF SOTA activation.
I will probably use this radio again for SOTA activations but I’ll be bringing along a backup rig, just in case.
When operating portable, I use Lithium Iron Phosphate batteries from Bioenno. Most of my portable operating is for Summits On The Air (SOTA) and I wrote about it here:
For POTA activations, I purchased a larger, 20 Ah Bioenno battery and use it to power a Yaesu FT-991 (and other radios). This battery has worked out really well. It is a bit large for backpack portable and weighs 5.4 pounds, but I have taken it along on a few SOTA activations.
Powerwerx PWRbox
I decided the battery could use a case to protect it while being tossed around in the back of the Jeep. Powerwerx has a really good battery box that includes a digital voltage readout, automotive (“cigarette lighter”) socket, dual PowerPole plugs and high-current binding posts.
The Powerwerx PWRbox
Initially, I did not think I needed the extra gizmos, and I did not want to take up more space with the battery system. Later, I figured that I could always pull the battery out of the box and use it in its original form.
The top of the battery box, with the connector covers open.
The power switch is handy for turning on/off the battery power and the digital voltmeter provides a simple view of the battery condition. Most of the time, I use the PowerPole connectors to connect up my radios but occasionally the automotive socket comes in handy.
The 20 Ah Bioenno battery sits inside the box with plenty of room to spare.
I used some of the plastic packing material that came with the box to hold the battery in place. A little bit of cutting with a sharp knife produced a good fit. There is enough room above the battery for the Bioenno charger, so it makes for a nice kit. The charger connects to the original charging plug on the battery.
The wiring underneath the lid of the box.
As expected, Powerwerx did a good job of wiring up the various components and included fuses in both the positive and negative cables. The box is big enough to hold a 40 Ah battery and I am tempted to upgrade it for larger capacity, but the 20 Ah battery has been sufficient, so far.
I’ve used this battery box for multiple POTA activations and a few other situations when I just needed to power up a radio at home. It works great. The voltmeter gives me a quick check of the battery status and the PowerPole connectors make for easy hookup.
The common Baofeng UV-5R can transmit and receive on a wide range of frequencies…but not necessarily within FCC rules.
From time to time, the question is raised about using radio equipment in multiple radio services. One common example is a licensed radio amateur that wants one radio to cover the Family Radio Service (FRS), General Mobile Radio Service (GMRS), and the 2m/70cm ham bands. Some people also want the Multi-Use Radio Service (MURS)…or maybe even marine VHF or aircraft VHF. The thinking goes that if one radio can transmit and receive on all these frequencies and that person is authorized to use those frequencies, then one radio can do it all.
This seems like a reasonable objective but the problem is that the FCC has a few rules and regulations that come into play. This leads to an important note: I am writing about the FCC rules and regs here…you may choose to ignore them but that’s on you.
Part 97: Amateur Radio Service
First, the good news. The Amateur Radio Service, governed by FCC Part 97, has very few restrictions on the type of equipment you can use. Heck, you can build a transceiver from parts and put it on the air. So the ham rules are not going to be a major limitation.
Part 95: FRS, GMRS and MURS
FRS, GMRS, and MURS radios are governed by FCC Part 95. Section 95.591 says this about FRS radios:
§ 95.591 Sales of FRS combination radios prohibited.
Effective September 30, 2019, no person shall sell or offer for sale hand-held portable radio equipment capable of operating under this subpart (FRS) and under any other licensed or licensed-by-rule radio services in this chapter (devices may be authorized under this subpart with part 15 unlicensed equipment authorizations).
Section 95.1761 says this about GMRS transmitters:
(c) No GMRS transmitter will be certified for use in the GMRS if it is equipped with a frequency capability not listed in § 95.1763, unless such transmitter is also certified for use in another radio service for which the frequency is authorized and for which certification is also required. No GMRS transmitter will be certified for use in the GMRS if it is equipped with the capabilities to operate in services that do not require equipment certification, such as the Amateur Radio Service. All frequency determining circuitry (including crystals) and programming controls in each GMRS transmitter must be internal to the transmitter and must not be accessible from the exterior of the transmitter operating panel or from the exterior of the transmitter enclosure.
(d) Effective December 27, 2017, the Commission will no longer issue a grant of equipment authorization for hand-held portable unit transmitter types under both this subpart (GMRS) and subpart B of this part (FRS).
The Midland MXT400 is a typical GMRS mobile transceiver.
Similarly, MURS radios have this restriction (Part 95.2761):
(c) A grant of equipment certification will not be issued for MURS transmitters capable of operating under both this subpart (MURS) and under any other subparts of this chapter (except part 15).
The FCC is saying (requiring) that FRS, GMRS and MURS radios must work on their designated frequencies and nothing else. At one time, it was legal to sell a combination FRS/GMRS radio but the FCC has specifically removed that option. Part 95.1761 seems to leave an opening for a GMRS radio that is also certified for use in another radio service, but that is a very thin opening and it specifically excludes the Amateur Radio Service.
Now, why would the FCC put these restrictions in the regulations? The answer is pretty simple: these radio services are intended to be used by everyday, non-technical folks. The radios need to be simple to use and not include the capability to wander off onto any old frequency. Hence, the rules lock down the frequencies that the radios can use.
(As a side note, this regulatory approach is good for amateur radio. Imagine if FRS radios had Channel 30 set up to transmit on 146.52 MHz, with a note in the manual that says “only use this channel if you have an amateur radio license.” We would have a crapton of unlicensed operating on 2 meters.)
Part 90: Private Land Mobile Radio Services
Part 90 regulates a broad range of land mobile radio, including public service, police/fire, search and rescue, forestry, utilities, and businesses. Licensing is very specific under Part 90. A radio license will specify a particular set of frequencies allowed, specific power levels and emission types, and even the allowed operating location of the radios.
Radios designed for Part 90 are usually programmed by a radio tech to operate only those specific frequencies that a licensee is authorized to use. This results in a relatively simple operating set up with the user just selecting from the preset channels on the radio. Part 90 radios normally cover a wide range of frequencies so that the manufacturer and the radio shop can sell one radio model to any licensed user.
In many cases, these Part 90 radios cover the adjacent amateur bands, such as 2m and 70cm. (For example, the Anytone AT-D878UV is Part 90 certified and covers 140-174 MHz and 400-480 MHz.) So this does open up the possibility of using a Part 90 radio under a Part 90 license and using it on the ham bands. A typical scenario is when a Search and Rescue member has a Part 90 radio set up to use the S&R frequency as well as the 2m/70cm amateur bands. The key to this is starting with a radio that is Part 90 certified and then programming it for the amateur band. Of course, you need to be authorized to use the Part 90 frequency and have an amateur radio license.
Getting Creative on Radio Configuration
A few years ago, Anytone Tech tried to market the TERMN-8R VHF/UHF radio as legal for the ham bands, GMRS, MURS and Part 90 use. An early review of this radio is here on the PD0AC blog. Basically, the radio had three distinct operating modes: GMRS, MURS, and Commercial/Normal. Initially, the FCC approved the radio but later took a closer look and canceled the authorization. The TERMN-8R is still available but without the three modes. It is marketed as a Part 90 radio that also does the amateur bands.
The Anytone TERMN-8R handheld transceiver.
I recently became aware of the Anytone AT-779UV which is sold in the USA as a Part 95 GMRS radio. However, using the programming software, the radio can be configured to cover the 2m and 70cm amateur bands or a much broader range of frequencies (136-174 & 400-470 MHz). If you change the radio configuration to operate on the ham bands (or wider), the radio is no longer Part 95 certified. The configuration via software takes some knowledge and effort so it is not a mode that you can easily switch back and forth. It is really no different than other software-programmable radios.
Wrap It Up
So there you go, your dream of One Radio To Rule Them All (FRS, GMRS, MURS, and the 2m/70cm ham bands) is not going to happen. At least not legally. You can configure a radio to do this…but it will not meet FCC regulations. However, you can configure a Part 90 radio to operate legally on Part 90 frequencies and on the amateur bands.
When discussing signal levels and power output, hams like to say things like:
Using higher power isn’t important because it only gives you one additional S unit
and
You’ll lose some power in the coax but you won’t even notice a few dB
These statements are often true and at the same time may be completely wrong. I’ve noticed that radio amateurs pushing the limits of their station pay close attention to every decibel they gain or lose. This is especially true at VHF/UHF frequencies where signals may be weak. A dB here, a dB there, the next thing you know it adds up to something big!
Definitions
First, let’s make sure we have a few definitions right. The decibel (dB) is defined as the ratio of two power levels:
dB = 10 log (P2/P1)
One decibel corresponds to a 26% increase in power level. A well-known rule of thumb is that doubling the power corresponds to a 3 dB increase. Similarly, chopping the power in half drops the signal level by 3 dB. A 10 times increase in power is 10 dB. (Voltage can also be used to calculate decibel relationships but to keep it simple, I’ll just use power.)
The S Unit is normally defined as a 6-dB change in signal level, which is a factor of 4 in power. (Your S meter may or may not actually follow this rule but that is a topic for another day.)
Power Level
Let’s compare a few different power levels to get a feel for how decibels and S units behave. Let’s use a 5 watt QRP level as our reference power. If we crank up the power to 100 watts, we have 10 log (100/5) = 13 dB increase in power level. This is slightly more than two S units (2 x 6 dB), so we would expect the S meter on the other end to read 2 units higher.
Now suppose we kick in our linear amplifier to produce a 1 kilowatt RF signal. This power level is 10 log (1000/5) = 23 dB higher than the 5 watt signal, or roughly four S units.
Now if our QRP signal was a solid S9 to start with, adding another 23 dB on top of it may not be that significant. The station can be heard at S9 or can be heard even louder at S9 + 23 dB. Except when there’s a pile of stations all calling that rare DX…then the loudest station tends to be heard. Crafty operating skill and good luck may overcome the power difference.
But consider the other extreme. Our QRP station is being heard right at the noise floor on the receive end. The two stations are struggling to complete the contact and the propagation path degrades by 2 dB. Now the QRP station is below the noise and uncopyable. We increase our power to 100 watts and gain 2 S units…still not very strong but the ability to receive the signal improves dramatically. Crank it up to 1000 watts and you gain another couple of S units and the copy is quite good. The key point is that changes in signal level matter most at the margin, when you can just barely copy the signal. (By the way, there is nothing wrong with running QRP…many ops enjoy the challenge of making contacts with low power.)
At the receiver, our ability to recover the signal is determined by the signal-to-noise ratio (SNR). A higher noise floor at the receiver means it will be more difficult to hear the signal coming in. The type of modulation being used may also make a big difference. Good old CW and the WSJT modes use a narrower bandwidth and will get through when wider-band modulation (SSB, FM) fails. In all cases, a stronger signal works better.
Antennas
Antenna systems also increase our signal level…and they do it for both transmit and receive. I recently did some comparisons of VHF antennas from a SOTA summit. My 2m Yagi antenna has 6 dB of gain (referenced to a dipole) and my comparisons showed that the performance of this antenna was good enough to pull some signals out of the noise to be solid copy. This occurred when the other station’s signal was right at the noise floor (using my lower gain antennas) such that the 6 dB improvement had a significant impact.
Sometimes hams will say that VHF is just line-of-sight propagation and that the signal level doesn’t matter much. This is partially true but often we are stretching for contacts beyond line-of-sight. Take a look at this article: The Myth of VHF Line-Of-Sight. This is another case where we are operating on the margin and every dB matters.
Feedline loss can cause us to lose decibels, which impacts both transmit and receive performance. If your coaxial cable is short, then the losses may be negligible. Increasing cable length and increasing frequency produce more loss. For example, 100 feet of RG-8X has only 1.1 dB of loss at 10 MHz. Increase the frequency to 146 MHz and the loss jumps to 4.5 dB, using the Times Microwave cable calculator. That means 50 watts of power at the transmitter turns into 17.7 watts at the other end of the cable. Using LMR-400 coax reduces the attenuation to 1.5 dB.
Summary
You can choose to ignore small changes in your signal level. A dB here or there may not make a big difference with casual ham radio operating. But these losses tend to add up and may become significant. Most importantly, just a few dB may be the critical difference between making a radio contact or not, when operating at the margin.
Getting out on the road and exploring is always fun, especially if you have ham radio on board. Joyce/K0JJW and I have been doing quite a bit of travel lately and we just completed our longest road trip so far with our RV.
Overview of the trip: Colorado to Key West, Florida and back again.
Our main destinations for the trip were four national parks: Congaree NP, Biscayne NP, Everglades NP, and Dry Tortugas NP. This determined the main route but we also found plenty of other things to do along the way. We started in Colorado, cut the corner across New Mexico into Texas, then east through Oklahoma, Arkansas, Mississippi, Alabama, Georgia and South Carolina. Then we headed south to Florida and ended up in Key West. Our return trip followed the gulf coast back to Texas, then back home.
Travel Philosopy
Planning a trip is full of trade-offs, so it is useful to have a general approach that the participants agree on. Our approach to this trip was to not drive too far every day but drive enough to hit the various places we wanted to visit. We are still working to find the right balance. This trip lasted 39 days, covering 6000 miles, which is about 150 miles per day. Some days we drove very little and other days were longer, maybe 400 miles.
Although the trip was created around the national parks, we filled in with interesting stops along the way. In particular, we like to camp at state parks: the campgrounds are great and there’s usually something interesting about the park to enjoy. And did I mention they are natural Parks On The Air (POTA) opportunities? We also tried to work in some Summits On The Air (SOTA) activations that are relatively easy to access.
Rocky Victoria
Our recreational vehicle (RV) is a 2018 Winnebago Paseo, built on a Ford Transit chassis. We named her Rocky Victoria, using non-standard phonetics, but usually just refer to her as “Rocky”.
Rocky Victoria is our Winnebago Paseo RV.
Compared to your typical car or SUV, this Class B RV is huge. Compared to other RVs, this vehicle is small, about 22 feet long, usually fits in a standard parking space. With all of the normal RV stuff installed (stove, microwave, sink, refrigerator, toilet/shower combo, bed, etc.) there is not a lot of room left for personal gear.
Rocky fits us really well because it is easy to drive, getting in and out of places without much hassle. Also, setup and tear-down time at a campsite is minimal. One limitation is poor ground clearance, which is fine for forest service roads in good condition but not appropriate for offroad use. This affects what SOTA and POTA activations we do.
Radio Gear
We have an ICOM IC-2730A in Rocky, for normal 2m/70cm FM comms while running down the road. The antenna (not visible in the photo) is just a short whip on the driver’s side of the hood.
Rocky is not a big RV so by the time we load up all of our stuff, it is full. So the radio gear (and everything else we take along) must follow the backpacker principle of “take only what you need, use what you take.” No room for extra stuff you don’t use.
For this trip, we took along two ham stations: A basic VHF SOTA station and a capable, picnic-table POTA station.
VHF SOTA Station
The VHF SOTA station is very compact and easy to carry. It covers the 2m and 70cm bands on FM, which is usually sufficient for us. The RF output power is only 5W, so it does not have the punch of one of our higher power radios. Not a bad tradeoff though.
Two Yaesu FT-1DR 2m/70cm handheld transceivers Arrow 3-element Yagi 2m antenna Two RH 770 dualband SMA antennas HT chargers and other accessories
Picnic Table POTA Station
The POTA station is built around the FT-991, which is a 100 watt transceiver (HF/VHF/UHF) that is reasonably compact. We use a 20 Ah LFP battery to power the radio so it is portable and independent of the RV power sources.
Yaesu FT-991 Transceiver (HF, 6m, 2m, 70cm) End-fed halfwave antennas for 40m, 20m, 17m, 15m, 10m Roll-up j-pole antenna for 2m/70cm 20-foot fishing pole to support antennas Two 25-foot lengths of RG-8X coaxial cable 12V, 20 Ah LFP Battery (Bioenno Power)
Joyce/K0JJW operates the picnic-table POTA station.
The POTA station does a great job at a campsite, usually on a picnic table. The POTA station fits inside my Kelty backpack so it can be taken for a hike. It is a bit heavy for a typical SOTA summit but works OK for drive-up and short-hike summits. It can also be set up inside the RV if required.
Single-band end-fed halfwave antenna (PAR EndFedz) for 20 meters.
Typically, we are going to try operating on 20m or 17m so that the halfwave antenna easily hangs from the fishing pole support. Depending on conditions, we often have to use 40m which takes a little more work to hang. Not a huge problem, though.
Collapsible fishing pole for supporting wire antennas.
For portable operating, I’ve tended to use a variety of end-fed wire antennas supported by a non-conductive pole of various sizes. For this trip, we used a 7 meter (21 feet) telescoping fishing pole that collapses to about 30 inches. This pole will fit into my SOTA backpack.
20m halfwave antenna supported by the fishing pole mounted on the RV. (The 20m halfwave needs to be hung at an angle to be supported off the ground.)
To support the fishing pole directly from the RV, I attached a short length of plastic pipe to the ladder. It is a simple matter to slide the pole into pipe, resulting in the top of the pole being about 26 feet off the ground.
A short piece of plastic pipe is attached to the RV ladder so the fishing pole can be easily inserted.
The combination of the two stations gives us a lot of options for ham radio operating.
Summits On The Air
We activated three summits along the way: Mount Scott (W5O/WI-002) in Oklahoma, Choctaw County HP (W5M/MS-001) in Mississippi, and Monte Sano Mountain (W4A/HR-002) near Huntsville, AL.
Monte Sano Mountain is just east of Huntsville, AL inside Monte Sano State Park.
Monte Sano Mountain turned out to be a unique location because it is located in the Monte Sano State Park. The park surrounds the summit, which is broad and flat. We determined that the park campground is within the activation zone, so we camped there and did both SOTA and POTA activations.
Parks On The Air
We did a number of POTA activations along the way. This was done opportunistically, typically in the afternoon after we had set up our campsite. Our radio operating used SSB on 20m or 40m, along with a few 2m FM contacts.
K-0688 Lake Meredith National Recreation Area US-TX K-1090 Lake Chicot State Park US-AR K-1048 Monte Sano State Park US-AL K-0017 Congaree National Park US-SC K-1832 Anastasia State Park US-FL K-0024 Everglades National Park US-FL K-0635 St. George State Park US-FL K-2992 Brazos Bend State Park US-TX
Every one of these activations was a lot of fun. There’s nothing like sitting outdoors in the sunshine working a pileup of enthusiastic POTA hunter stations.
Summary
In this post, I emphasized the ham radio activity during this trip. Radio operating was not our main goal but it was a big part of the overall experience. Joyce and I had a fantastic time touring this section of the country, and we are looking forward to our next trip.
Joyce/K0JJW and I did another activation of Mt Herman (W0C/FR-063) today. This is a repeat summit for us this year but we were looking for an easy hike not too far from home.
The Yaesu FT-90 transceiver is small and lightweight, perfect for portable operating when you need a little more RF power.
As usual, we were just using the VHF/UHF bands for the activation. My favorite rig for this type of SOTA activation is a Yaesu FT-90, a very compact mobile transceiver (4 x 1.2 x 5.4 inches) that is no longer manufactured. It has a unique heatsink with an integral fan that can handle the heat from the 50-watt transmitter. We use a Bioenno 4.5 Ah LFP battery to supply the power for the radio.
I was trying to work Bob/W0BV about 65 miles away and we were not able to complete the contact. The distance is not too difficult but there are several mountain ranges in the way. Sometimes we can get the electromagnetic waves to sneak through, but not today. Hiking down the mountain, I was thinking about how we could have probably made the QSO on SSB or CW, instead of FM. I chose not to bring the all-mode transceiver (FT-817) along today, so that was not an option.
That is when the idea hit me. The FT-90 is the right form-factor and power level for VHF/UHF SOTA but it is limited to FM. Yaesu, if you are listening, here’s what I’d really like to see in a small mobile transceiver:
FT-90 size radio, perhaps a little larger but not much
2m and 70 cm bands (include 1.25m if you’d like)
At least 25 watts of output power, more would be better (say 50 watts)
All mode capability (CW/SSB/FM/Digital), sure go ahead and toss C4FM in too.
No internal battery…I’m going to have to use an external battery anyway to get enough battery capacity
At various times, I have had people ask “why don’t they put SSB in handheld radios?” They recognize that SSB has weak-signal advantages over FM, so they wish their handheld transceiver (HT) could do it. I say rather than shove more features into an HT, put it in an FT-90 size radio. It would be a much more usable solution.
Although I arrived at this radio concept thinking about SOTA, it would also be a great mobile rig for general use. The FT-90 was popular because it was very compact AND it had a removable faceplate that could be mounted almost anywhere. There really is no way to get VHF/UHF SSB into a vehicle other than those all-band radios like the FT-857 and the IC-7100. Oh, did I say FT-857? Sorry, that model has been discontinued. The satellite operators will love it, too, especially if it could work 2m/70cm crossband full-duplex.
So there you go, Yaesu (or Icom)…a fantastic product concept at no charge. I would be happy to beta test it for you.
Each individual posting is the property of its respective author and the opinions expressed may not represent those of AmateurRadio.com including its editor, staff, or sponsors. Content may not be reproduced without written permission.
Sign up for our free Amateur Radio Newsletter
Ham radio news and commentary, plus free radio gear giveaways