Posts Tagged ‘sunspots’

Thirty Minutes of Dazzle: The Sun in UHD 4K by SDO (NASA)

Take a front-seat view of the Sun in this 30-minute ultra-high definition movie in which NASA SDO gives us a stunning look at our nearest star.

This movie provides a 30-minute window to the Sun as seen by NASA’s Solar Dynamics Observatory (SDO), which measures the irradiance of the Sun that produces the ionosphere. SDO also measures the sources of that radiation and how they evolve.

SDO’s Atmospheric Imaging Assembly (AIA) captures a shot of the sun every 12 seconds in 10 different wavelengths. The images shown here are based on a wavelength of 171 angstroms, which is in the extreme ultraviolet range and shows solar material at around 600,000 Kelvin (about 1 million degrees F.) In this wavelength it is easy to see the sun’s 25-day rotation.

The distance between the SDO spacecraft and the sun varies over time. The image is, however, remarkably consistent and stable despite the fact that SDO orbits Earth at 6,876 mph and the Earth orbits the sun at 67,062 miles per hour.

Scientists study these images to better understand the complex electromagnetic system causing the constant movement on the sun, which can ultimately have an effect closer to Earth, too: Flares and another type of solar explosion called coronal mass ejections can sometimes disrupt technology in space. Moreover, studying our closest star is one way of learning about other stars in the galaxy. NASA’s Goddard Space Flight Center in Greenbelt, Maryland. built, operates, and manages the SDO spacecraft for NASA’s Science Mission Directorate in Washington, D.C.

Charged particles are created in our atmosphere by the intense X-rays produced by a solar flare. The solar wind, a continuous stream of plasma (charged particles), leaves the Sun and fills the solar system with charged particles and magnetic field. There are times when the Sun also releases billions of tons of plasma in what are called coronal mass ejections. When these enormous clouds of material or bright flashes of X-rays hit the Earth they change the upper atmosphere. It is changes like these that make space weather interesting.

Sit back and enjoy this half-hour 4k video of our Star!  Then, share.  🙂

73 dit dit

 

Stunning Ultra-HD View; Sun Timelapse 2015 NASA/SDO

This video is ten minutes of coolness.

This cool time-lapse video shows the Sun (in ultra-high definition 3840×2160 – 4k on YouTube) during the entire year, 2015. The video captures the Sun in the 171-angstrom wavelength of extreme ultraviolet light. Our naked, unaided eyes cannot see this, but this movie uses false-colorization (yellow/gold) so that we can watch in high definition.

The movie covers a time period of January 2, 2015 to January 28, 2016 at a cadence of one frame every hour, or 24 frames per day. This timelapse is repeated with narration by solar scientist Nicholeen Viall and contains close-ups and annotations. The 171-angstrom light highlights material around 600,000 Kelvin and shows features in the upper transition region and quiet corona of the sun.

The first half tells you a bit about the video and the Sun, and you can see the entire year 2015 rotate by.  The second half is narrated by a NASA scientist.  It is worth watching all ten minutes.  And, then, sharing!

The sun is always changing and NASA’s Solar Dynamics Observatory is always watching.

Launched on Feb. 11, 2010, SDO keeps a 24-hour eye on the entire disk of the sun, with a prime view of the graceful dance of solar material coursing through the sun’s atmosphere, the corona. SDO’s sixth year in orbit was no exception. This video shows that entire sixth year–from Jan. 1, 2015 to Jan. 28, 2016 as one time-lapse sequence. Each frame represents 1 hour.

SDO’s Atmospheric Imaging Assembly (AIA) captures a shot of the sun every 12 seconds in 10 different wavelengths. The images shown here are based on a wavelength of 171 angstroms, which is in the extreme ultraviolet range and shows solar material at around 600,000 Kelvin (about 1 million degrees F.) In this wavelength it is easy to see the sun’s 25-day rotation.

During the course of the video, the sun subtly increases and decreases in apparent size. This is because the distance between the SDO spacecraft and the sun varies over time. The image is, however, remarkably consistent and stable despite the fact that SDO orbits Earth at 6,876 mph and the Earth orbits the sun at 67,062 miles per hour.

A blending of an entire year, 2015, of the Sun as seen by NASA SDO at EUV 171 Angstroms

A blending of an entire year, 2015, of the Sun as seen by NASA SDO at EUV 171 Angstroms

Why This is Important

Scientists study these images to better understand the complex electromagnetic system causing the constant movement on the sun, which can ultimately have an effect closer to Earth, too: Flares and another type of solar explosion called coronal mass ejections can sometimes disrupt technology in space. Moreover, studying our closest star is one way of learning about other stars in the galaxy. NASA’s Goddard Space Flight Center in Greenbelt, Maryland. built, operates, and manages the SDO spacecraft for NASA’s Science Mission Directorate in Washington, D.C.

For us radio enthusiasts, the study of the Sun helps us understand the dynamics of radio signal propagation.  And, that aids us in communicating more effectively and skill.

Thanks for sharing, voting, and watching.  More information and live Sun content can be accessed 24/7 at http://SunSpotWatch.com

You can also get the Space Weather and Radio Propagation Self-study Course at http://SunSpotWatch.com/swc

 

Five X-class (Major) X-ray Flares in a Row (plus more!)

Well, thankfully, this is not happening during this contest weekend: one of the largest sunspot regions during this Sunspot Cycle 24, and one of the biggest in several decades, gave us quite a show, back in October 2014.

Five major X-class (very strong) and a number of moderate and “mild” solar x-ray flares erupted from a single sunspot region – this video covers the time period of October 19-27, 2014, as captured by NASA’s SDO spacecraft. This is from what has been one of the biggest sunspot regions in a number of decades.

Between October 19 and October 27, 2014, a particularly large active region on the Sun dispatched many intense x-ray flares. This region, labeled by NOAA as Active Region (AR) number 12192 (or, simply, NOAA AR 12192, and shortened as AR 2192), is the largest in 24 years (at that point in Solar Cycle 24).

The various video segments track this sunspot region during this period (Oct. 19 – Oct.27, 2014), during which we can see the intense explosions. There are five X-class flares during this time, and NASA’s Solar Dynamics Observatory (SDO), which watches the sun constantly, captured these images of the event.

Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth’s atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel.

When referring to these intense solar eruptions, the letter part of the classification, ‘X’, means, ‘X-class’. This denotes the most intense flares, while the number, after the classification letter, provides more information about its strength. For example, an X2 is twice as intense as an X1, an X3 is three times as intense, and so forth.

Solar Images Credit: NASA’s Goddard Space Flight Center & SDO

http://SunSpotWatch.com ~ http://NW7US.us

73 de NW7US

Sunspot Numbering System Revised


Although sunspot data has been recorded in one form or another for over 400 years, there have been few changes in the counting system since the introduction of the 'Wolf Number' in 1849. Recording of the sunspot 'Group Number' came into existence in 1998. It seems there were some strong differences in the two parallel series of systems and in 2011 a group of 40 experts undertook a full examination and revision of both systems in order to identify and fix the defects.


The new system, which became effective on July 1st, has brought both systems into alignment, with the most notable correction being in the lowering, by about 18%, of all numbers after 1947. The new Group Number has been corrected for a large underestimate of all values before the 20th century and has resulted in a fully reconstructed series of Group Numbers.

courtesy: http://www.sidc.be/
Viewed graphically, through my non-expert eyes, most of the earlier cycles up until 1947 appear to show slightly stronger peaks than before while those after 1947, including monster Cycle 19, show smaller peaks.

The graphic of Group Numbers shows significant increases for cycles up until the 1900's.

courtesy: http://www.sidc.be/



The new system brings the correlation of Group Numbers and Sunspot Numbers into harmony, unlike before.



courtesy: http://www.sidc.be/


Although these changes became effective on July 1st, the work is far from complete. According to the folks at SILSO (Sunspot Index and Long-term Solar Observations):

Still, as can be seen, significant deviations remain, mainly before 1825, when the observations become scarce and in periods of activity minima (low counts). So, more work definitely remains to be done for many years to come, but given the major improvements harvested at this stage, the WDC - SILSO is now going to proceed with the public release of this new version.
 


The preparation of this major operation is now almost completed. It required a huge organizational and programming work from the small SILSO team. Indeed, the release of the new past Sunspot series is just a starting point for the WDC-SILSO. Indeed, it requires a deep reworking of the operational software that will process the data from our worldwide network on July 1st and in the future. Indeed, various data products must be made seamlessly compatible with the new base total Sunspot Number series: the hemispheric Sunspot Numbers, the daily Estimated Sunspot Number, the 12-month solar-cycle forecasts, all data plots and the derivation of personal k coefficients for all stations of the network.


After a rather uneventful life over the past 166 years, the Sunspot Number will thus be reborn in a new incarnation on Wednesday July 1st. We hope that the science community will welcome this revived data set and will appreciate the considerable community effort accomplished over the past four years to produce a better reference for long-term solar and Sun-Earth studies.

New Sunspot Region: Flare Activity Expected This Week

There is a new sunspot region rotating into view, producing moderately-strong (M-class) x-ray flares. This video shows you the first 11 hours of May 5, 2015

Expect flares throughout this week, which will degrade HF propagation DURING the flare, but enhance propagation overall (due to the higher Radio Flux). There might be occasional coronal mass ejections, too.

 

https://www.youtube.com/watch?v=lgis5Bg8dBk

Watch stunning highlights, last 5 years of the Sun

We rely on the Sun for HF radio communication propagation. For the last five years, we have an amazing front-row seat: the SDO spacecraft. Here is a video with highlights of the last five years of solar activity as seen by NASA and the SDO AIA spacecraft. This is worth seeing on a larger monitor, so try to view it full screen on something larger than your palm. The music is pretty good too. It is worth the 20-some minutes of stunning viewing. Be sure to share!

Enjoy!

 

Details:

This video features stunning clips of the Sun, captured by SDO from each of the five years since SDO’s deployment in 2010. In this movie, watch giant clouds of solar material hurled out into space, the dance of giant loops hovering in the corona, and huge sunspots growing and shrinking on the Sun’s surface.

April 21, 2015 marks the five-year anniversary of the Solar Dynamics Observatory (SDO) First Light press conference, where NASA revealed the first images taken by the spacecraft. Since then, SDO has captured amazingly stunning super-high-definition images in multiple wavelengths, revealing new science, and captivating views.

February 11, 2015 marks five years in space for NASA’s Solar Dynamics Observatory, which provides incredibly detailed images of the whole Sun 24 hours a day. February 11, 2010, was the day on which NASA launched an unprecedented solar observatory into space. The Solar Dynamics Observatory (SDO) flew up on an Atlas V rocket, carrying instruments that scientists hoped would revolutionize observations of the Sun.

Capturing an image more than once per second, SDO has provided an unprecedentedly clear picture of how massive explosions on the Sun grow and erupt. The imagery is also captivating, allowing one to watch the constant ballet of solar material through the sun’s atmosphere, the corona.

The imagery in this “highlight reel” provide us with examples of the kind of data that SDO provides to scientists. By watching the sun in different wavelengths (and therefore different temperatures, each “seen” at a particular wavelength that is invisible to the unaided eye) scientists can watch how material courses through the corona. SDO captures images of the Sun in 10 different wavelengths, each of which helps highlight a different temperature of solar material. Different temperatures can, in turn, show specific structures on the Sun such as solar flares or coronal loops, and help reveal what causes eruptions on the Sun, what heats the Sun’s atmosphere up to 1,000 times hotter than its surface, and why the Sun’s magnetic fields are constantly on the move.

Coronal loops are streams of solar material traveling up and down looping magnetic field lines). Solar flares are bursts of light, energy and X-rays. They can occur by themselves or can be accompanied by what’s called a coronal mass ejection, or CME, in which a giant cloud of solar material erupts off the Sun, achieves escape velocity and heads off into space.

This movie shows examples of x-ray flares, coronal mass ejections, prominence eruptions when masses of solar material leap off the Sun, much like CMEs. The movie also shows sunspot groups on the solar surface. One of these sunspot groups, a magnetically strong and complex region appearing in mid-January 2014, was one of the largest in nine years as well as a torrent of intense solar flares. In this case, the Sun produced only flares and no CMEs, which, while not unheard of, is somewhat unusual for flares of that size. Scientists are looking at that data now to see if they can determine what circumstances might have led to flares eruptions alone.

Scientists study these images to better understand the complex electromagnetic system causing the constant movement on the sun, which can ultimately have an effect closer to Earth, too: Flares and another type of solar explosion called coronal mass ejections can sometimes disrupt technology in space as well as on Earth (disrupting shortwave communication, stressing power grids, and more). Additionally, studying our closest star is one way of learning about other stars in the galaxy.

Goddard built, operates and manages the SDO spacecraft for NASA’s Science Mission Directorate in Washington, D.C. SDO is the first mission of NASA’s Living with a Star Program. The program’s goal is to develop the scientific understanding necessary to address those aspects of the sun-Earth system that directly affect our lives and society.

Please visit my channel on YouTube, and subscribe ( https://YouTube.com/NW7US ).

— Twitter: https://Twitter.com/NW7US
— Facebook: https://www.facebook.com/spacewx.hfradio
— Web: http://SunSpotWatch.com
( Data feed Twitter https://Twitter.com/hfradiospacewx )

Credits:

Music Via YouTube “Free-for-use” Creation Tools

Video clips of the Sun are from NASA’s Goddard Space Flight Center/SDO which are in the Public Domain

By the way, this is an example of what I am trying to produce on a more regular basis, once I launch the space weather YouTube channel that I have started. If you wish to help, here is the GoFundMe link: http://www.gofundme.com/sswchnl

 

Solar Plasma Filament Eruption – The Sun – November 6,7 2013

The Sun currently is active, with powerful, complex magnetic structures that have formed a healthy number of sunspots. We are seeing a fair number of x-ray flares, which push the 10.7-cm flux higher than we’ve seen in a while.

Sunspots and flares means better propagation in general, especially on the higher frequencies of the shortwave spectrum.  While a flare can cause a short period of “blackout” conditions (especially on the lower frequencies) on the sunlit side of the Earth, such activity is part of the positive activity that ionizes the F-region, providing for DX.

Here’s a movie of one such flare and the release of solar plasma, a release known as a coronal mass ejection (CME): At about midnight, UTC, on 6 November 2013, a moderately-strong M-class flare erupted, with a “beautiful” CME: http://g.nw7us.us/18a0QvI

(Source: SOHO/SDO/NASA)

We will see continued flare activity over the weekend, so expect great conditions on the HF bands, with momentary blackouts.  Keep up to the minute on space weather at http://SunSpotWatch.com

73 – de NW7US
Propagation Columnist, CQ Communications Magazine, Popular Communications Magazine
http://NW7US.us


Subscribe FREE to AmateurRadio.com's
Amateur Radio Newsletter

 
We never share your e-mail address.

Please support our generous sponsors who make AmateurRadio.com possible:

KB3IFH QSL Cards

Hip Ham Shirts

Georgia Copper

Ham-Cram
Expert Linears

morseDX

Ni4L Antennas

N3ZN Keys

West Mountain
R&L Electronics


Do you like to write?
Interesting project to share?
Helpful tips and ideas for other hams?

Submit an article and we will review it for publication on AmateurRadio.com!

Have a ham radio product or service?
Consider advertising on our site.

Are you a reporter covering ham radio?
Find ham radio experts for your story.

How to Set Up a Ham Radio Blog
Get started in less than 15 minutes!


  • Matt W1MST, Managing Editor




Sign up for our free
Amateur Radio Newsletter

Enter your e-mail address: