Is Your Miniwhip Too High?

The Mini-Whip at University of Twente's (Netherlands) Remote Receiver

A recent posting to Yahoo's ndblist Group described an interesting experiment by Dirk Claessens regarding the signal-to-noise ratio (SNR) versus height of his PAØRDT active whip. Dirk's tests were posted on Yahoo's Navtex DXing Group where some further interesting discussion seemed to confirm his findings.

Here is what Dirk discovered, backed-up with his graph data, clearly pointing to the 'ideal height' at his location ... and probably yours as well.

Hi all,

You may recall that to get rid of a source of QRM, my whip is now hanging from a rope-and-pulley system, about 5 .5 mtr from the house, at a height of 7 meter agl.
As the height of the whip can easily be changed, this is an ideal situation to test the behaviour of the whip wrt noise levels, optimal height etc..
I had done this test before some 4 years ago, but not very precise. Time to do it again, and documenting it.
What I also wanted to check, is if there were any noise sources of the own house possibly reaching the whip.
(how far does the "noise bubble" go in function of the height?)

The Perseus was tuned to 549 KHz Deutschlandfunk Nordkirchen, the station closest to 518.
2 markers were set, one to the signal, and a reference marker in a quiet spot nearby on 543 KHz, to get a reading for the noise floor.
The whip was then lowered in "1 meter each minute" steps, readings were taken and written to the marker file.

First the absolute values were plotted.
Note that: blue = noise floor, red = signal, and that the left and right axis scales have identical spans of 19dB, but are shifted, in order to get a compact graph.
We see that for a delta height of 6 meters:
-the noise floor goes up ~8dB, or 8/6 = 1.3 dB/m, almost linearly.
-the signal goes up ~14 dB, or 14/6 = 2.3 dB/m, clearly curved and showing a maximum at ~5..7 m.
The continuous lines are polynomic (2nd degree) regression lines.


The noise on the measurement values seems to increase with decreasing height.  Was this caused by my body standing under the whip, and near to the whip for the lowest measurements??

What really matters of course, is the signal over noise value, this is plotted below:


-Within a narrow 1 dB band, the curve shows a clear optimum in the region of 4..7 m agl, a familiar value often given as optimal by Roelof.
-The measurement was performed during the day and thus with ground wave propagation. As the whip is truly omnidirectional, I cannot see a reason why the behaviour would be different at low angle DX signals.
- At 5.5 meter from the house, the whip seems to be outside of the "noise bubble"

and later, following discussion:

I have just checked the noise floor again at 518 (with no signal present)

Perseus set to 125 kS/s, Span/RBW 25/30.5
Shield grounded: -125 dBm
Not grounded:  -110 dBm

That's a whopping 15 dB difference!
I have also buried the coax ~20cm deep from the grounding point to where it enters the house.

The ideal height was also that recommended by Roelof, PAØRDT, originally and points out that one of antenna-building's most sacred commandments ... "the higher the better", is not always true!

I have often recommended this simple antenna for those looking for a very effective yet low-footprint receiving antenna for use on the LF and MF bands.

Much more information about Roelof's popular miniwhip may be found in previous blog discussions here.

Steve McDonald, VE7SL, is a regular contributor to AmateurRadio.com and writes from British Columbia, Canada. Contact him at [email protected].

One Response to “Is Your Miniwhip Too High?”

  • Jacek KW4EP:

    E-field antenna is a capacitor and to work properly needs ground terminal to be connected to the Earth somewhere. If you don’t ground it at its location, the coax shield will be used as a ground wire. The big downside of grounding through coax is that it will bring to the antenna all the noise and EM junk present in the shack. The best solution is to mount the antenna on a metal mast, or connect the ground terminal to earthing point. This makes a huge difference: My experiment with grounding the antenna using very short (~15cm) earth electrode dropped the noise by >10dB. OTOH antenna connected to an sdr receiver used with a laptop powered from a gas generator and sitting on a wooden bench (no direct ground connection, earth potential referenced through small capacitance of equipment insulation) was receiving mostly noise.
    PA3FWM has a very good writeup on operation of MiniWhip: http://www.pa3fwm.nl/technotes/tn07.html

Leave a Comment

Subscribe FREE to AmateurRadio.com's
Amateur Radio Newsletter
News, Opinion, Giveaways & More!

E-mail 
Join over 7,000 subscribers!
We never share your e-mail address.



Also available via RSS feed, Twitter, and Facebook.


Subscribe FREE to AmateurRadio.com's
Amateur Radio Newsletter

 
We never share your e-mail address.

Please support our generous sponsors who make AmateurRadio.com possible:

KB3IFH QSL Cards

Hip Ham Shirts

Georgia Copper

Ham-Cram
Expert Linears

morseDX

Ni4L Antennas

N3ZN Keys

West Mountain
R&L Electronics


Do you like to write?
Interesting project to share?
Helpful tips and ideas for other hams?

Submit an article and we will review it for publication on AmateurRadio.com!

Have a ham radio product or service?
Consider advertising on our site.

Are you a reporter covering ham radio?
Find ham radio experts for your story.

How to Set Up a Ham Radio Blog
Get started in less than 15 minutes!


  • Matt W1MST, Managing Editor




Sign up for our free
Amateur Radio Newsletter

Enter your e-mail address: